Some Definitions

Stochastic version of Samuelson's (1939) Classical Model

$$
\begin{aligned}
y_{t} & =c_{t}+i_{t} \\
c_{t} & =\alpha y_{t-1}+\varepsilon_{c t} \\
i_{t} & =\beta\left(c_{t}-c_{t-1}\right)+\varepsilon_{i t}
\end{aligned}
$$

- This is a model with three equations, and with three endogenous variables $\left(y_{t}, c_{t}, i_{t}\right)$
- It is a dynamic model (Past variables affect the current variables)
- It is a structural form model. This is because it explains endogenous variables with current realizations of other endogenous variables
- A reduced form model explains endogenous variables with exogenous ones
* That is, it explains endogenous variables with their and other endogenous variables' lags (that are called predetermined variables), also current and past values of exogenous variables
- Reduced form investment equation can be obtained as

$$
\begin{aligned}
i_{t} & =\gamma\left(c_{t}-c_{t-1}\right)+\epsilon_{i t}=\gamma\left(\alpha y_{t-1}+\varepsilon_{c t}-c_{t-1}\right)+\varepsilon_{i t} \\
& =\gamma \alpha y_{t-1}-\gamma c_{t-1}+\gamma \varepsilon_{c t}+\varepsilon_{i t},
\end{aligned}
$$

which can also be written as

$$
i_{t}=\beta_{1} y_{t-1}+\beta_{2} c_{t-1}+e_{t}
$$

* Note that the reduced from shock $\left(e_{t}\right)$ is combination of the structural shocks ($\varepsilon_{c t}$ $\left.\& \varepsilon_{i t}\right)$
- Similarly, after some substitutions a reduced-form equation for GDP can be obtained as follows

$$
y_{t}=a y_{t-1}+b y_{t-2}+e_{t}
$$

- This is a univariate reduced-form equation; y_{t} is expressed solely as a function of its own lags and a disturbance term

CHAPTER 1: DIFFERENCE EQUATIONS

- Difference equation expresses the value of a variable as a function of its own lagged values, time, and other variables
- Time-series econometrics is concerned with the estimation of difference equations containing stochastic components
- Suppose we have the following series as data

- Time series methodology was originally developed to decompose a series into a trend, a seasonal, a cyclical, and an irregular components
- The trend component represents the long-term behavior of the series
- The cyclical and seasonal components represent the regular periodic movements
- The irregular component is stochastic

- Trend: $T_{t}=1+0.1 t$
- Seasonal: $S_{t}=1.6 \sin (t \pi / 6)$
- Irregular: $I_{t}=0.7 I_{t-1}+\varepsilon_{t}$, where ε_{t} is random disturbance (such as $\varepsilon_{t} \sim N\left(0, \sigma^{2}\right)$

Interpreting the Random Term

$$
I_{t}=0.7 I_{t-1}+\varepsilon_{t}
$$

where 0.7 is the degree of autocorrelation

- Substituting for the lags of I_{t}

$$
\begin{gathered}
I_{t}=0.7\left(0.7 I_{t-2}+\varepsilon_{t-1}\right)+\varepsilon_{t} \\
=0.7^{2} I_{t-2}+\varepsilon_{t}+0.7 \varepsilon_{t-1} \\
=0.7^{2}\left(0.7 I_{t-3}+\varepsilon_{t-2}\right)+\varepsilon_{t}+0.7 \varepsilon_{t-1} \\
=0.7^{3} I_{t-3}+\varepsilon_{t}+0.7 \varepsilon_{t-1}+0.7^{2} \varepsilon_{t-2}
\end{gathered}
$$

showing that the past shocks affect the current state of the variable. (Yet, this effect diminishes over time.)

- Writing the last equations at time $t+3$

$$
I_{t+3}=0.7^{3} I_{t}+\varepsilon_{t+3}+0.7 \varepsilon_{t+2}+0.7^{2} \varepsilon_{t+1}
$$

showing how the current value of the variable can be used the forecast its future values...

E-views Application

wfcreate (wf=income process) u 80
series $\mathrm{t}=1+0.1^{*} @$ TREND
$!\mathrm{pi}=3.14159$
series $\mathrm{s}=1.6^{*} \sin (@ T R E N D *!p i / 6)$
series $\mathrm{e}=\mathrm{nrnd}$
series $\mathrm{i}=0$
smpl @first+1 @last
$\mathrm{i}=0.7^{*} \mathrm{i}(-1)+\mathrm{e}$
series data $=\mathrm{NA}$
smpl @first @first+49
series data $=\mathrm{t}+\mathrm{s}+\mathrm{i}$
smpl @first+50 @last
series data $=\mathrm{t}+\mathrm{s}$
smpl @all
graph aa data
show aa

Difference Equations and Their Solutions

- n th-order difference equation with constant coefficients

$$
\begin{equation*}
y_{t}=a_{0}+\sum_{i=1}^{n} a_{i} y_{t-i}+x_{t} \tag{10}
\end{equation*}
$$

where $x_{t}=\sum_{i=0}^{\infty} \beta_{i} \varepsilon_{t-i}$ and ε_{t} is a random disturbance term that has an expected value of zero

- A solution to a difference equation expresses the value of y_{t} as a function of the elements of the
- $\left\{x_{t}\right\}$ sequence
$-t$
- initial conditions (y_{0})
- So we have two considerations:

1 How to solve linear difference equations?
2 Whether that solution is stable or not?

Solution by Iteration

- Consider the first order homogeneous difference equation

$$
\begin{equation*}
y_{t}=a_{0}+a_{1} y_{t-1}+\varepsilon_{t} \tag{17}
\end{equation*}
$$

- Given the value of y_{0}, it follows that

$$
\begin{align*}
& y_{t}= a_{0}+a_{1}\left(a_{0}+a_{1} y_{t-2}+\varepsilon_{t-1}\right)+\varepsilon_{t} \\
&= a_{0}+a_{1} a_{0}+a_{1}^{2} y_{t-2}+\varepsilon_{t}+a_{1} \varepsilon_{t-1} \\
&= a_{0}+a_{1} a_{0}+a_{1}^{2}\left(a_{0}+a_{1} y_{t-3}+\varepsilon_{t-2}\right)+\varepsilon_{t}+a_{1} \varepsilon_{t-1} \\
&= a_{0}+a_{1} a_{0}+a_{1}^{2} a_{0}+a_{1}^{3} y_{t-3}+\varepsilon_{t}+a_{1} \varepsilon_{t-1}+a_{1}^{2} \varepsilon_{t-2} \\
& \ldots \tag{18}\\
& \quad \cdots \\
& \quad y_{t}=a_{0} \sum_{i=0}^{t-1} a_{1}^{i}+a_{1}^{t} y_{0}+\sum_{i=0}^{t-1} a_{1}^{i} \varepsilon_{t-i}
\end{align*}
$$

- If $\left|a_{1}\right|<1$, the solution converges to

$$
\begin{equation*}
y_{t}=\frac{a_{0}}{1-a_{1}}+\sum_{i=0}^{\infty} a_{1}^{i} \varepsilon_{t-i} \tag{21}
\end{equation*}
$$

E-views Application

wfcreate (wf=income process) u 50
series $y=5$
smpl @first+1@last
$\mathrm{y}=0.5^{*} \mathrm{y}(-1)+2$
smpl @all
graph aa y
show aa

- If $\left|a_{1}\right|>1$, then the $\left\{y_{t}\right\}$ series explodes, and the solution requires knowledge of initial conditions

$$
y_{t}=a_{0} \sum_{i=0}^{t-1} a_{i}^{i}+a_{1}^{t} y_{0}+\sum_{i=0}^{t-1} a_{i}^{i} \varepsilon_{t-i}
$$

E-views Application
wfcreate (wf=income process) u 50
series $\mathrm{y}=5$
smpl @first+1 @last
$y=1.5^{*} y(-1)+2$
smpl @all
graph aa y
show aa

- If $a_{1}=1,(17)$ is called a unit root process and its solution reduces to

$$
y_{t}=a_{0} t+\sum_{i=0}^{t} \varepsilon_{i}+y_{0}
$$

$-\sum_{i=1}^{t} \varepsilon_{i}$ is the random walk component

- $a_{0} t$ is the time trend
- together, the $\left\{y_{t}\right\}$ series follow a random walk with a drift

E-views Application (Drift Component-also called Trend Component)
wfcreate (wf=income process) u 500
series $\mathrm{y}=5$
smpl @first+1 @last
$y=y(-1)+2$
smpl @all
graph aa y
show aa

E-views Application (Unit Root Component)
wfcreate (wf=income process) u 50
series $\mathrm{y}=5$
series $\mathrm{e}=\mathrm{nrnd}$
smpl @first+1 @last
$y=y(-1)+e$
smpl @all
graph aa y
show aa

In this case, both the trend and the unit root components prevent the y_{t} series from converging to a stable point.

Why $\left|a_{1}\right|=1$ is Critical?

- Consider the equation

$$
\begin{equation*}
y_{t}=a_{0}+a_{1} y_{t-1}+\varepsilon_{t} \tag{17}
\end{equation*}
$$

- The homogeneous part of this equation is

$$
y_{t}=a_{1} y_{t-1}
$$

its solution (which reflects the long-term dynamics of the model) is given by

$$
y_{t}^{h}=a_{1}^{t} y_{0}
$$

a_{1} is called characteristic root of this equation

- If $\left|a_{1}\right|>1$, given y_{0}, the y_{t} series explodes as time goes to infinity

Solving Second Order Homogeneous Difference Equations

- Consider the homogeneous equation

$$
\begin{equation*}
y_{t}-a_{1} y_{t-1}-a_{2} y_{t-2}=0 \tag{45}
\end{equation*}
$$

- Its solution has the form

$$
y_{t}^{h}=\alpha^{t} y_{0}
$$

combining with equation (45)

$$
\alpha^{t} y_{0}-a_{1} \alpha^{t-1} y_{0}-a_{2} \alpha^{t-2} y_{0}=0
$$

dividing by α^{t-2}

$$
\begin{equation*}
\alpha^{2}-a_{1} \alpha-a_{2}=0 \tag{47}
\end{equation*}
$$

- Solving this quadratic equation yields two characteristic roots:

$$
\alpha_{1}, \alpha_{2}=\frac{a_{1} \pm \sqrt{a_{1}^{2}+4 a_{2}}}{2}
$$

- If $a_{1}^{2}+4 a_{2} \geq 0$
- There will be real characteristic roots
- If $a_{1}^{2}+4 a_{2}<0$
- In this case the characteristic roots have both real and imaginary parts

$$
\alpha_{1}, \alpha_{2}=\left(a_{1} \pm i \sqrt{-d}\right) / 2
$$

where $d=a_{1}^{2}+4 a_{2}$ and $i=\sqrt{-1}$

Stability Conditions

- Consider the following semicircle

- Real numbers are measured on the horizontal axis and imaginary numbers are measured on the vertical axis
- Stability requires that all roots lie within a circle of radius one
- In this case the homogeneous solution will be convergent
- If the characteristic roots are complex, the stability condition again requires that

$$
r=\sqrt{\left(a_{1} / 2\right)^{2}+(i \sqrt{-d} / 2)^{2}}<1
$$

- In the time-series literature, it is simply stated that stability requires that all characteristic roots lie within the unit circle.
- If all characteristics roots lie within the unit circle, then the equation and its solution are stable
- If at least one characteristics root lie outside the unit circle, then the equation and its solution are unstable
- If at least one characteristics root lie on the unit circle, then the equation is unstable and contains a unit root

Example:

$$
y_{t}=0.2 y_{t-1}+0.35 y_{t-2}
$$

then

$$
\begin{gathered}
a_{1}=0.2 \text { and } \quad a_{2}=0.35 \\
\alpha_{1}, \alpha_{2}=\frac{a_{1} \pm \sqrt{a_{1}^{2}+4 a_{2}}}{2}=\frac{0.2 \pm \sqrt{0.2^{2}+4 * 0.35}}{2} \\
\alpha_{1}=0.7 \text { and } \alpha_{2}=-0.5
\end{gathered}
$$

- The homogeneous solution is

$$
y_{t}=A_{1}(0.7)^{t}+A_{2}(-0.5)^{t}
$$

- Convergence is not monotonic because of the influence of the expression $(-0.5)^{t}$

E-views Application

wfcreate ($\mathrm{wf}=$ income process) u 20
series $\mathrm{y}=25+3^{*}(0.7)^{\wedge} @ T R E N D+4^{*}(-0.5)^{\wedge} @ T R E N D$
graph aa y
show aa

Higher Order Systems

- See Applied Econometric Time Series, Walter Enders to check necessary and sufficient conditions for stability of higher order systems

Solution by Lag Operators

- The lag operator L is defined to be a linear operator such that for any value y_{t}

$$
L^{i} y_{t}=y_{t-i}
$$

- It has the following properties
- The lag of a constant is constant

$$
L c=c
$$

- L raised to a negative power is actually a lead operator:

$$
L^{-i} y_{t}=y_{t+i}
$$

- Using lag operators, we can write the p th-order equation

$$
y_{t}=a_{0}+a_{1} y_{t-1}+a_{2} y_{t-2}+\ldots+a_{p} y_{t-p}+\varepsilon_{t}
$$

as

$$
\left(1-a_{1} L-a_{2} L^{2}-\ldots-a_{p} L^{p}\right) y_{t}=a_{0}+\varepsilon_{t}
$$

or, more compactly as

$$
A(L) y_{t}=a_{0}+\varepsilon_{t}
$$

where $A(L)$ is the polynomial

- Lag operators can be used to express the equation

$$
y_{t}=a_{0}+a_{1} y_{t-1}+\ldots+a_{p} y_{t-p}+\varepsilon_{t}+\beta_{1} \varepsilon_{t-1}+\ldots+\beta_{q} \varepsilon_{t-q}
$$

as follows

$$
A(L) y_{t}=a_{0}+B(L) \varepsilon_{t}
$$

- Consider the following first-order equation where $\left|a_{1}\right|<1$

$$
y_{t}=a_{0}+a_{1} y_{t-1}+\varepsilon_{t}
$$

- Using the definition of L

$$
\begin{align*}
\left(1-a_{1} L\right) y_{t} & =a_{0}+\varepsilon_{t} \\
y_{t} & =\frac{a_{0}}{1-a_{1} L}+\frac{\varepsilon_{t}}{1-a_{1} L} \\
& =a_{0} \sum_{i=0}^{\infty}\left(a_{1} L\right)^{i}+\sum_{i=0}^{\infty}\left(a_{1} L\right)^{i} \varepsilon_{t-i} \\
& =\frac{a_{0}}{1-a_{1}}+\sum_{i=0}^{\infty} a_{1}^{i} \varepsilon_{t-i} \tag{21}
\end{align*}
$$

the last equation is the same with we found by iteration

Example

$$
I_{t}=0.7 I_{t-1}+\varepsilon_{t}
$$

- Solution by iteration: Just substitute for the lags of I_{t}

$$
\begin{gathered}
I_{t}=0.7\left(0.7 I_{t-2}+\varepsilon_{t-1}\right)+\varepsilon_{t} \\
=0.7^{2} I_{t-2}+0.7 \varepsilon_{t-1}+\varepsilon_{t} \\
=0.7^{2}\left(0.7 I_{t-3}+\varepsilon_{t-2}\right)+0.7 \varepsilon_{t-1}+\varepsilon_{t} \\
\cdots \\
=\sum_{i=0}^{\infty}(0.7)^{i} \varepsilon_{t-i}
\end{gathered}
$$

- Solution by using the lag operator

$$
\begin{gathered}
I_{t}=0.7 L I_{t}+\varepsilon_{t} \\
I_{t}(1-0.7 L)=\varepsilon_{t} \\
I_{t}=\frac{\varepsilon_{t}}{1-0.7 L} \\
=\varepsilon_{t}+0.7 L \varepsilon_{t}+0.7^{2} L^{2} \varepsilon_{t}+\ldots \\
=\sum_{i=0}^{\infty}(0.7)^{i} \varepsilon_{t-i}
\end{gathered}
$$

Solving Second Order Homogeneous Difference Equations with Lag Operators

- Consider once again the homogeneous equation

$$
\begin{equation*}
y_{t}-a_{1} y_{t-1}-a_{2} y_{t-2}=0 \tag{45}
\end{equation*}
$$

which can be written as

$$
y_{t}-a_{1} L y_{t}-a_{2} L^{2} y_{t}=0
$$

which can be simplified as

$$
1-a_{1} L-a_{2} L^{2}=0
$$

we can either try to solve this quadratic equation, or multiply it by L^{-2}, which finds

$$
L^{-2}-a_{1} L^{-1}-a_{2}=0
$$

when we compare it with Equation (47)

$$
\begin{equation*}
\alpha^{2}-a_{1} \alpha-a_{2}=0 \tag{47}
\end{equation*}
$$

we see that $\alpha=L^{-1}$.

Example:

$$
y_{t}=0.2 y_{t-1}+0.35 y_{t-2}
$$

we know that the solution of this homogenous equation is

$$
\alpha_{1}=0.7 \text { and } \alpha_{2}=-0.5
$$

then the solution of the equation obtained with lag operators is

$$
\alpha_{1}=1 / 0.7 \text { and } \alpha_{2}=-1 / 0.5=-2
$$

- Hence, when written in lag operators, stability requires that
- If all characteristics roots lie outside the unit circle, then the equation and its solution are stable
- If at least one characteristics root lie inside the unit circle, then the equation and its solution are unstable
- If at least one characteristics root lie on the unit circle, then the equation is unstable and contains a unit root

