Some Definitions

Stochastic version of Samuelson’s (1939) Classical Model

Yt = Ct it

Ct = QY1+ Ect

it = (et — ct—1) + €t
e This is a model with three equations, and with three endogenous variables (y¢, ¢, i)
e It is a dynamic model (Past variables affect the current variables)

e It is a structural form model. This is because it explains endogenous variables with current
realizations of other endogenous variables

— A reduced form model explains endogenous variables with exogenous ones

x That is, it explains endogenous variables with their and other endogenous variables’
lags (that are called predetermined variables), also current and past values of ex-
ogenous variables

— Reduced form investment equation can be obtained as

it = (et —c—1) + €t = y(OYi—1 + €t — ci—1) + €t
= YQyi—1 — VCt—1 + VEet T Eit,

which can also be written as
i = By—1+ Boc—1 + e

* Note that the reduced from shock (e;) is combination of the structural shocks (eq
& 8#)

e Similarly, after some substitutions a reduced-form equation for GDP can be obtained as
follows
Yyt =ayi—1+byi—2 + e

e This is a univariate reduced-form equation; y; is expressed solely as a function of its own lags
and a disturbance term



CHAPTER 1: DIFFERENCE EQUATIONS

e Difference equation expresses the value of a variable as a function of its own lagged values,
time, and other variables

o Time-series econometrics is concerned with the estimation of difference equations containing
stochastic components

e Suppose we have the following series as data
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e Time series methodology was originally developed to decompose a series into a trend, a
seasonal,a cyclical, and an irregular components

— The trend component represents the long-term behavior of the series
— The cyclical and seasonal components represent the regular periodic movements

— The irregular component is stochastic
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e Trend: 7; =1+ 0.1¢

e Seasonal: S; = 1.6sin(tmr/6)

e Irregular: I; = 0.71;_1 + &, where & is random disturbance (such as e; ~ N (0, 0?)



Interpreting the Random Term
It = 0.7It_1 + &

where 0.7 is the degree of autocorrelation
e Substituting for the lags of I;
It = 07(07[t—2 + Et—l) + &

=0.72I;_9 + &, 4+ 0.75,4
= 0.72(0.711;73 +ep9)+er+0.7e4
=0.73L_5+e +0.Te,_1 + 0.7%;_5

showing that the past shocks affect the current state of the variable. (Yet, this effect dimin-
ishes over time.)

e Writing the last equations at time ¢ + 3
Iips = 0.73It 4+ cey43 +0.7e440 + 0'7252&4—1
showing how the current value of the variable can be used the forecast its future values...

E-views Application

wicreate (wf=income process) u 80
series t=1+0.1*QTREND

Ipi = 3.14159

series s=1.6*sin(QTREND*!pi/6)
series e=nrnd

series i=0

smpl Qfirst+1 Q@last
i=0.7*i(-1)+e

series data=NA

smpl Qfirst Qfirst-+49
series data =t+s+i

smpl Qfirst+50 Qlast

series data =t+s

smpl @all
graph aa data

show aa



DATA
12

10

2
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Difference Equations and Their Solutions

e nth-order difference equation with constant coefficients

n
ye=ao+ Y ait—i + Ty (10)
i=1
0
where x; = Z B;et—i and ; is a random disturbance term that has an expected value of
i=0

Z€ero

e A solution to a difference equation expresses the value of y; as a function of the elements of
the

— {x¢} sequence
-1
— initial conditions (o)

e So we have two considerations:

1 How to solve linear difference equations?

2 Whether that solution is stable or not?

Solution by Iteration

e Consider the first order homogeneous difference equation

Yt = ao + a1yt—1 + & (17)



e Given the value of yq, it follows that

ye = ap+ai(ao+ a1y +er-1) + &
= ap+arap + ajyi—z + ¢ + arg1
= ap+aiaqp+ a%(ao +a1yi—3 + St_Q) + &t + a1€¢-1
= ap+aag+ a%ao + af{’yt,3 + e +a1e-1 + a%etd

-1 -1
ye=aoy_aj+aiyo+ ) aje (18)
=0 1=0

e If |a;| < 1, the solution converges to

o0
ao i
= Et—i 21
Yt 1_a1+za1tz ( )
=0
E-views Application
wicreate (wf=income process) u 50
series y=5
smpl Qfirst+1 Q@last
y=0.5%y(-1)+2
smpl @all
graph aa y
show aa
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o If | a1 |> 1, then the {y;} series explodes, and the solution requires knowledge of initial

conditions
t—1 t—1
i t i
Yt = Qg E a; +ajyo + E Q;€t—i
=0 i=0



E-views Application
wicreate (wf=income process) u 50
series y=bH

smpl Qfirst+1 Qlast
y=1.5%y(-1)+2

smpl @all
graph aa y
show aa
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e If a; =1, (17) is called a unit root process and its solution reduces to

t

Yr = aot-l-zfz' + Yo
i=0

¢
- Z g; is the random walk component
i=1
— apt is the time trend

— together, the {y;} series follow a random walk with a drift

E-views Application (Drift Component-also called Trend Component)
wicreate (wf=income process) u 500

series y=H

smpl Qfirst+1 Q@last

y=y(-1)+2

smpl @all
graph aa y
show aa
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E-views Application (Unit Root Component)
wicreate (wf=income process) u 50

series y=H

series e=nrnd

smpl @first+1 @last

y=y(-1)+e

smpl @all

graph aa y
show aa
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In this case, both the trend and the unit root components prevent the y; series from converging
to a stable point.



Why | a; |=1 is Critical?

e Consider the equation
Yt = ao + a1yi—1 + &t (17)

e The homogeneous part of this equation is
Yt = a1Yi—1
its solution (which reflects the long-term dynamics of the model) is given by
Yt = ajyo
aq is called characteristic root of this equation

o If | a1 |> 1, given yo, the y; series explodes as time goes to infinity

Solving Second Order Homogeneous Difference Equations

e Consider the homogeneous equation
Y — a1yt—1 — agyp—2 =0 (45)

e [ts solution has the form

yf = Oétyo

combining with equation (45)
a'yo — a1’ yo — aga’ Py = 0

dividing by a!~2

o —aja —ag =0 (47)
e Solving this quadratic equation yields two characteristic roots:

A== \/a% + 4as
2

ap, Qg =

o If a? + 4az2 > 0
— There will be real characteristic roots
o If a? +4ay < 0
— In this case the characteristic roots have both real and imaginary parts
ar,ay = (a1 £iv—d)/2

where d = a% +4as and 1 = /-1



Stability Conditions

e Consider the following semicircle
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e Real numbers are measured on the horizontal axis and imaginary numbers are measured on
the vertical axis

e Stability requires that all roots lie within a circle of radius one

e In this case the homogeneous solution will be convergent

— If the characteristic roots are complex, the stability condition again requires that

r=1/(ar/2)? + (V=d/2)2 < 1

e In the time-series literature, it is simply stated that stability requires that all characteristic
roots lie within the unit circle.

— If all characteristics roots lie within the unit circle, then the equation and its solution
are stable

— If at least one characteristics root lie outside the unit circle, then the equation and its
solution are unstable

— If at least one characteristics root lie on the unit circle, then the equation is unstable
and contains a unit root

Ezample:
Yt = O.Qyt—l + 0'35yt—2

then
a1 =0.2 and a9 =0.35

a1 £/af +4ay  0.2£022+4%0.35
2 B 2
a1 = 0.7 and as =—-0.5

a1, Q2 =



e The homogeneous solution is
y; = A1(0.7)" + Az(—0.5)"

1 Example 1
l
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e Convergence is not monotonic because of the influence of the expression (—0.5)

E-views Application

wicreate (wf=income process) u 20

series y=25+ 3%(0.7)"QTREND+ 4*(-0.5)"QTREND
graph aa y

show aa
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Higher Order Systems

e See Applied Econometric Time Series, Walter Enders to check necessary and sufficient con-
ditions for stability of higher order systems
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Solution by Lag Operators
e The lag operator L is defined to be a linear operator such that for any value y;
Liyt = Yt—i
e It has the following properties

— The lag of a constant is constant
Le=c

— L raised to a negative power is actually a lead operator:
L7y =y
e Using lag operators, we can write the pth-order equation
Yt = a0 + a1Yt—1 + a2Yt—2 + ... + ApYt—p + €t

as
(1—a1L — asl? — ... — apLP)y; = ap +&¢

or, more compactly as
A(L)y = ao + &t

where A(L) is the polynomial
e Lag operators can be used to express the equation
Yyt =ao+ a1yt—1+ ... + apYr—p t €t + B1&t—1 + ... + BE1—q

as follows
A(L)yt =ag + B(L)Et

e Consider the following first-order equation where | a; |< 1
Yt = ao + a1yt-1 + &t
e Using the definition of L
(1—ail)yy = ap+e

ap Et
1—(11[/ + 1 —alL

Uy =

[e.0] oo
= qg Z(alL)i + Z(alL)ist_i
i=0 i=0

a 00
0 .
= + E azlét_i
l—ay
1=0

the last equation is the same with we found by iteration

Ezxzample
I =071+ ¢
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e Solution by iteration: Just substitute for the lags of I
I, = 0.7(0.7It_2 + Et—l) + &

= 0-721t—2 + 0.78t_1 + &
=0.7%(0.7l;_3 + &42) + 0.754_1 + &

=> (0.7)e;
=0

e Solution by using the lag operator
It = 07LIt + &

It(l — O?L) = &t
1-0.7L

=&, 4+0.7Le; + 0.7 L%, + ...
o
= (0.7
=0

I

Solving Second Order Homogeneous Difference Equations with Lag
Operators

e Consider once again the homogeneous equation
Yt — a1ye—1 — a2yp—2 =0 (45)

which can be written as
yr — a1 Ly; — aa Ly, = 0

which can be simplified as
1—a;L —al* =0

we can either try to solve this quadratic equation, or multiply it by L~2, which finds

L2—a L7 ' —ay=0

when we compare it with Equation (47)

o —aja—ay =0 (47)

we see that o = L1
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Example:
yr = 0.2y;1 + 0.35y¢ 2

we know that the solution of this homogenous equation is
a; = 0.7 and ay = —0.5
then the solution of the equation obtained with lag operators is

a; =1/0.7 and az =-1/0.5= -2

e Hence, when written in lag operators, stability requires that

— If all characteristics roots lie outside the unit circle, then the equation and its solution
are stable

— If at least one characteristics root lie inside the unit circle, then the equation and its
solution are unstable

— If at least one characteristics root lie on the unit circle, then the equation is unstable
and contains a unit root
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