
CHAPTER 2: STATIONARY TIME-SERIES MODELS

Stochastic Di¤erence Equation Models
� Say we have sequence of observations of a variable y over time

fy0; y1; y2; : : : ; ytg

� A stochastic process describes the probability structure of these observations

� The elements of an observed time series are realizations of this stochastic process

� y is a deterministic variable if there is some r for which p(yt = r) = 1

Stationarity
� A stochastic process is called weakly (covariance) stationary when the mean, the variance
and the covariance structure of the process is time independent and �nite, that is

E(yt) = � <1

var(yt) = 0 <1
cov(yt; yt�s) = E(yt � �)E(yt�s � �) = jt�sj 8t 6= s

� The last condition states that the covariance between yt and ys depends only on the displace-
ment jt� sj = j

� The set of autocovariances j ; j = 0;�1;�2; ::: is called the autocovariance function of a
stationary process

A White-Noise Process
� It is the simplest stationary process. It has a mean of zero, a constant variance, and is
uncorrelated with all other realizations. Formally,

E("t) = 0

V ar("t) = 0 = �
2
"

E("t"t�j) = j = 0 for j = 1; 2; :::

ARMA Models
� For a stochastic process, if stability conditions hold, stationarity conditions are satis�ed

� Wold�s Decomposition Theorem: Any discrete stationary covariance time series process fytg
can be expressed as the sum of two uncorrelated processes

yt = dt + ut

where dt is purely deterministic and ut is a purely indeterministic process:

ut =
1X
i=0

�i"t�i

where
P1
i=0(�i)

2 < 1 is necessary for stationarity and "t is a white-noise process (it is
conventional to de�ne �0 = 1)
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� Taking dt as a constant, reparametrizing the in�nite order indeterministic process to a �nite
one (below we discuss the way doing it)

yt = a0 +

pX
i=1

aiyt�i +

qX
i=0

�i"t�i: (5)

If all the characteristic roots of (5) are all in the unit circle, fytg is called an ARMA model
for fytg

� The autoregressive part:
pX
i=1

aiyt�i

� The moving average part:
qX
i=0

�i"t�i

� If the homogeneous part of the di¤erence equation contains p lags and the moving average
part contains q lags, the model is called an ARMA(p; q) model

� Using the lag operator, (5) can be written as

(1� a1L� :::� apLp)yt = a0 + (1 + �1L+ :::+ �pLp)"t

or
A(L)yt = a0 + �(L)"t

where A(L) and �(L) are called the AR polynomial and the MA polynomial, respectively

� Moreover, stability ensures that

yt =
a0
A(L)

+
�(L)

A(L)
"t = A

�1(L)a0 + C(L)"t

Hence, Wold decomposition implies that stationary series have an in�nite moving average
representation

Why use ARMA Models?
� Suppose the true data generating process is as follows

yt = c+ xt + "t + "t�1

where xt exogenous regressors and "t is a white noise process

� The above process suggests that shocks to yt lasts for two periods

� If you estimate the above model through a regression

yt = c+ xt + et

then there is a serial correlation in the error terms,

cov(et; et�1) = cov("t + "t�1; "t�1 + "t�2) = var("t�1) 6= 0
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� Serial correlation violates the standard assumption of regression theory that error terms are
uncorrelated

�Reported standard errors and t-statistics are invalid

� Things can even get worse: Suppose the true data generating process is as follows

yt = c+ yt�1 + xt + "t + "t�1

and if you estimate it by using the following model

yt = c+ yt�1 + xt + et

regressors and the error terms become correlated

cov(yt�1; et) = cov(yt�1; "t + "t�1) 6= 0

� In this case, OLS estimates are biased and inconsistent

E-views Application

wfcreate (wf=income process) u 1000

series y=0

series e=nrnd

smpl @�rst+1 @last

y=0.7*y(-1)+e+0.5*e(-1)

ls y y(-1)

� Serial correlation is a common occurrence in time series data because the data is ordered
(over time) so that the e¤ect of shocks could easily last for more then one period. Moreover,
each new arriving observation is stochastically depending on the previously observed
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� If accounted for, this time dependence is useful. It allow us topredict future values of series

� ARMAmodels accounts for this time dependence so that the model captures all of the relevant
structure

� In what follows:

1. We will use stationary data

� So that the mean, variance, and autocorrelations of the series can be obtained based
on the single set of realizations

2. We will identify the data generating process (type of ARMA model)

� For this, we will use autocorrelation and partial autocorrelation functions

� There are methods to make the nonstationary data stationary, such as di¤erencing, detrend-
ing, and �ltering. We defer this discussion to the next chapters

The Autocorrelation (ACF) and Partial Autocorrelation (PACF)
Functions
� In the case of stationary processes, the autocorrelation coe¢ cient at lag j, denoted by �j , is
de�ned as the correlation between yt and yt�j :

�j =
cov(yt; yt�s)p

var(yt)
p
var(yt�j)

=
j
0
; j = 0;�1;�2; :::

� The plot of �j against j (for j � 1) is called correlogram

�The properties of autocorrelation function (ACF) are:

�0 = 1

j�j j � 1

� The partial autocorrelation coe¢ cient, on the other hand, measures the linear association
between yt and yt�j adjusted for the e¤ects of the intermediate values yt�1; :::; yt�j+1

� Therefore, it is the coe¢ cient aj in the linear regression model:

yt = a0 + a1yt�1 + :::+ ajyt�j + et

� We will examine the ACF and PACF functions of three extreme cases of ARMA(p; q) model

yt = a0 +

pX
i=1

aiyt�i +

qX
i=0

�i"t�i (5)

1. White Noise Process (a0 = p = q = 0)

2. Pure Autoregressive Process (q = 0)

3. Pure Moving Average Process (p = 0)
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1- White Noise Process
� The simplest ARMA model is a white noise process

yt = "t

which has no memory

� We can easily show that this is a stationary process

E(yt) = 0 <1

E(yt � �)2 = �2" <1

E(yt � �)E(yt�j � �) = 0 for j = 1; 2; :::

all of which are time independent and �nite terms

� Its autocorrelation (ACF) and partial autocorrelation (PACF) functions are:

�j = 0 if j 6= 0

aj = 0 if j 6= 0

� � � � � � � � � -
E-views Application

wfcreate (wf=income process) u 5000

series e=nrnd
series y=e
graph aa y
show aa
y.correl(10)

Hence, a white noise process in an ARMA(0,0) model; it shows no history dependence in any
form

� � � � � � � � � -
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2- Pure Autoregressive Process
� Example: AR(1) Process

yt = a0 + a1yt�1 + "t

(1� a1L)yt = a0 + "t

yt =
a0

1� a1L
+

"t
1� a1L

� If j a1 j< 1, the last equation can be written as

yt =
a0

1� a1
+

1X
i=0

ai1"t�i

� AR process has an in�nite memory so that it can be written as a collection of past shocks

� Notice that yt is a stationary process

�The mean of the sequence is �nite and time invariant

E(yt) =
a0

1� a1

�The variance is �nite and time independent

V ar(yt) = 0 = E[("t + a1"t�1 + a
2
1"t�2 + :::)

2] =
�2"

1� a21

�The covariance between yt and yt�s is constant and time invariant for all t and t� s

Cov(yt; yt�j) = j = E[(a
j
1yt�j +

jX
i=0

ai1"t�i)(yt�j)] = a
j
10

� Its autocorrelation (ACF) and partial autocorrelation (PACF) functions are as follows:

�j =
j
0
= aj1 aj =

�
a1 j = 1
0 j > 1

�
� Thus, ACF converges to zero geometrically

� PACF is zero at lag 2 and greater

� Example: AR(p) Process

yt = a0 +

pX
i=1

aiyt�i + "t

A(L)yt = a0 + "t

� The process is stable and stationary if the characteristic roots of the �rst equation all lie
inside the unit circle (the roots of the polynomial (1 �

X
aiL

i) must lie outside the unit
circle)
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� Under stationarity, the above process can be written as

yt =
a0

1�
pX
i=1

ai

+
"t

1�
pX
i=1

aiLi

=
a0

1�
pX
i=1

ai

+

1X
i=1

�i"t�i

� AR(p) process has an in�nite memory as well

� You can use Yule-Walker Conditions to calculate variance and autocovariance of a stationary
process

� Basically, for a stationary AR(p) process

yt = a0 + a1yt�1 + a2yt�2 + :::+ apyt�p + "t (1**)

� by multiplying (1**) with yt

0 = a11 + a22 + :::+ app + �
2
"

� by multiplying (1**) with yt�1

1 = a10 + a21 + :::+ app�1

and so no. Finally, by multiplying (1**) with yt�p

p = a1p�1 + a2p�2 + :::+ ap0

� Results:

� Autoregressive processes have an exponentially declining ACF, whether they are AR(1),
AR(2), etc. (nonstationary series also have an ACF that remains signi�cant for some lags)

� The partial autocorrelation of an AR(p) process is zero at lag p+1 and greater. Hence, partial
autocorrelations are useful in identifying the order of an autoregressive model (p) from the
data

� � � � � � � � � -
E-views Application

wfcreate (wf=income process) u 300

series e=nrnd
series y=0
smpl @�rst+1 @last
y=0.5*y(-1)+e
graph aa y
show aa
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y.correl(10)

ls y c ar(1)
series res=resid
res.correl(10)
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� � � � � � � � � -

3- Pure Moving Average Process

yt = a0 +

qX
i=0

�i"t�i = a0 + �(L)"t

� Stationarity:
E(yt) = a0

V ar(yt) = E[(�0"t + �1"t�1 + �2"t�2 + :::)
2] = �2

qX
i=0

�2i

cov(yt; yt�s) = �
2(�s + �s+1�1 + �s+2�2 + :::)

all of which are time independent and also �nite terms as long as
X

�2i is �nite

� Example: MA(1) Process
yt = a0 + "t + �"t�1

� Stationarity Check:
E(yt) = a0

� Yule-Walker Conditions:

0 = V ar(yt) = E[("t + �"t�1)("t + �"t�1)] = (1 + �
2)�2

1 = Cov(yt; yt�1) = E[("t + �"t�1)("t�1 + �"t�2)] = ��
2

2 = Cov(yt; yt�2) = E[("t + �"t�1)("t�2 + �"t�3)] = 0

� Hence, the autocorrelation of an MA(q) process is zero at lag q+1 and greater

� As a result, autocorrelations are useful in identifying the order of an autoregressive model
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� Note: Moving average processes have a geometrically (or oscillatory) declining PACF; hence,
they cannot be used in identifying the order of an autoregressive model

� � � � � � � � � -
E-views Application

wfcreate (wf=income process) u 300

series e=nrnd/15
series y=0

smpl @�rst+1 @last
y=e+0.5*e(-1)

graph aa y
show aa
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y.correl(10)

ls y c ma(1)
series res=resid
res.correl(10)
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� � � � � � � � � -

**AN IMPORTANT NOTE

� Both E-VIEWS and STATA models ARMA structure in the disturbances; that is, ARMA(1,1)
model is de�ned as

yt = c+ �t

where
�t = ��t�1 + "t + �"t�1

which can be estimated in e-views as -ls y ar(1) ma(1)-

� Note that this process can be also be written as autocorrelation in the dependent variable

yt = � + �yt�1 + "t + �"t�1

where
� = (1� �)c

which can be estimated as -ls y y(-1) ma(1)-

� In this case, it does not matter how we model the AR structure

� However, things are di¤erent for ARMAX models, where

yt = c+ Xt + �t

and
�t = ��t�1 + "t + �"t�1

� These two processes imply that

yt = (1� �)c+ �yt�1 + Xt � �Xt�1 + "t + �"t�1

� Hence, it is better if you specify lagged dependent variable separate from the error structure!

� � � � � � � � � -
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Stationarity Restrictions for an ARMA(p,q) Model
� For the general ARMA(p; q)model, the condition for stationary includes stationary conditions
for both AR and MA parts of the model

� Using lag operators

(1�
pX
i=1

aiL
i)yt = a0 +

qX
i=0

�i"t�i

�The roots of the polynomial (1�
X

aiL
i) must lie outside the unit circle

�
X

�2i must be �nite

� Mixed (ARMA) processes typically show exponential declines in both the ACF and the PACF

� Notes:

� If you are estimating a higher-order AR process, EViews requires you to include all lower-order
terms

� If you simply type ar(3) and omit other terms, this forces the estimate of ar(1) and ar(2)
to zero

� After from estimation, you may want to ensure that the residuals from the estimated model
mimic a white-noise process

Box-Jenkins Model Selection
� Box�Jenkins (1976) popularized a three-stage method aimed at selecting an appropriate model
for the purpose of estimating and forecasting a univariate time series

1 Identi�cation: Examine the time plot of the series, the autocorrelation function, and the
partial correlation function

2 Estimation: Fit the model by OLS or any other alternative methods

3 Diagnostic Checking: Ensure that the residuals from the estimated model mimic a white-
noise process

Alternative Methods of Checking for Serial Correlation (you are
not responsible from this part)
� The last two columns reported in the correlogram are the Ljung-Box Q-statistics and their
p-values. The Q-statistic at lag is a test statistic for the null hypothesis that there is no
autocorrelation up to order and is computed as

Q = T
sX
k=1

r2k

high sample autocorrelations lead to large values of Q

� Breusch-Godfrey (null hypothesis of no serial correlation)
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� � � � � � � � � -
E-views Application

wfcreate (wf=income process) u 300

series e=nrnd
series y=0
smpl @�rst+1 @last
y=e+0.5*e(-1)

ls y c
y.correl(10)

auto(1)

ls y c ar(1)
series res=resid
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ls res c
auto(1)

� � � � � � � � � -

Parsimony
� Incorporating additional coe¢ cients to an ARMA model will necessarily increase �t of the
model at a cost of reducing degrees of freedom

� A parsimonious model �ts the data well without incorporating any needless coe¢ cients

� Box and Jenkins argue that parsimonious models produce better forecasts than overparame-
terized models

� If di¤erent ARMA models may have similar properties, such as AR(1) and MA(1), the AR(1)
model is the more parsimonious model and is preferred

Model Selection Criteria
� We never know the true data-generating process

� There exist various model selection criteria that trade-o¤ a reduction in the sum of squares
of the residuals for a more parsimonious model

� The two most commonly used model selection criteria are the Akaike Information Criterion
(AIC) and the Schwartz Bayesian Criterion (SBC)

AIC = T � ln(sum of squared residuals) + 2n

SBC = T � ln(sum of squared residuals) + n � ln(T )
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�where n = number of parameters estimated (p + q + possible constant term)

�T = number of usable observations (notice that when you estimate a model using lagged
variables, some observations are lost)

� Notice that increasing the number of regressors increases n but reduces the sum of squared
residuals (SSR)

� Ideally, the AIC and SBC will be as small as possible

� EViews and SAS report values for the AIC and SBC using

AIC� = �2ln(L)=T + 2n=T

SBC� = �2ln(L)=T + nln(T )=T
where L is the maximized value of the log of the likelihood function

� For a normal distribution, �2ln(L) = T ln(2�) + T ln(�2) + (1=�2)(SSR)

Invertibility
� Invertibility conditions regard the moving average part

� yt is invertible if it can be represented by a �nite-order or convergent autoregressive process

� For instance, MA(1) model:
yt = "t � �"t�1

is invertible if j � j< 1
yt

(1� �L) = "t

or
yt + �yt�1 + �

2yt�2 + �
3yt�3 + ::: = "t (46)

� An AR process is stationary if it is inverted, but not all (stationary) MA process can be
invertible. Suppose we have the following model

yt = "t � "t�1

This process is a stationary one, yet, if � = 1, (46) �nds

yt + yt�1 + yt�2 + yt�3 + ::: = "t

Clearly, the autocorrelations and partial autocorrelations between yt and yt�j will never decay

� Moreover, if j � j> 1, yt can be written as
yt

��L[1� (�L)�1] = "t

or
�(�L)�1[yt + ��1yt+1 + (��1)2yt+2 + (��1)3yt+3 + :::] = "t;

or
���1yt+1 � (��1)2yt+2 � (��1)2yt+3 � ::: = "t;

implying that yt is a function of future values of yt which is not useful for forecasting
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� If invertibility condition is not imposed on a model with an MA component, di¤erent sets of
MA parameter values give rise to the same autocorrelation function

� Hence, invertibility provides uniqueness of the ACF and PACF functions
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