
CHAPTER 3: MODELS WITH TRENDS (NONSTATIONARY
MODELS)

Deterministic Trends (Drift Model)
� Suppose that a series changes by the same amount for every period

yt = yt�1 + a0 (or �yt = a0)

where a0 is the drift term. The general solution for yt is given by

yt = y0 + a0t

� That is, yt follows a time trend beginning from y0

� This is a nonstationary process. This is because neither its mean, nor its variance is constant
and time invariant

Stochastic Trend (Random Walk Model)
� Sequence fytg follows a random walk process if

yt = yt�1 + "t (or �yt = "t)

� Notice that unlike deterministic trend, changes in yt are unpredictable at time t. In this case,
we say yt has stochastic trend, as all stochastic shocks have nondecaying e¤ects on the fytg
sequence

� The general solution to the random walk model is

yt = y0 +
tX
i=1

"i

� The last observation is the unbiased estimator of all future values of yt+s

Etyt+s = yt + Et

sX
i=1

"t+i = yt

� The expectation of the process is not time invariant

Eoyt = yo

� Moreover, the variance is not constant but depends on t

var(yt) = var("t + "t�1 + :::+ "1) = t�
2

� Thus, the random walk process is nonstationary

� As t ! 1, the variance of yt also approaches in�nity (this is intuitive as we wouldn�t know
where fytg sequence might go)

� Since the memory of a random walk process is very high (the coe¢ cient of the autoregressive
part, yt�1, is 1 in the model), the autocorrelation function for a random walk process (�s) is
close to unity for small s
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The Random Walk Plus Drift Model
� This model augments the random walk model by adding a constant term a0, so that

yt = yt�1 + a0 + "t (or �yt = a0 + "t)

� The general solution for yt is given by

yt = y0 + a0t+
tX
i=1

"i (4.5)

� There are two nonstationary components

� a linear deterministic trend

� the stochastic trend
X

"i

REMOVING THE TREND
� A reason for trying to stationarize a time series is to be able to obtain meaningful sample
statistics such as means, variances, and correlations with other variables

� Moreover, using non-stationary time series data produces unreliable and spurious results and
leads to poor understanding and forecasting (law of large numbers, central limit theorem hold
for stationary random variables)

� Below, we analyze methods for making a series stationary, appropriateness of which depend
on whether the trend has a deterministic, or a stochastic component

Di¤erencing
� First consider the solution for the random walk plus drift model

yt = yt�1 + a0 + "t

Taking the �rst di¤erence, we obtain

�yt = a0 + "t (1)

Clearly, the �yt sequence� equal to a constant plus a white-noise disturbance� is stationary

� The above process is called ARIMA (0,1,0) model (ARIMA: autoregressive integrated moving
average)

� The model has no AR and MA component, but requires �rst di¤erencing to be stationary

� Now consider the general model ARIMA model

A(L)yt = B(L)"t (2)

where A(L) and B(L) are polynomials of orders p and q in the lag operator L

� We know that stationary of yt requires all all roots of A(L) lie outside the unit circle

� Suppose this condition is not satis�ed and yt has a single unit root
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� Then we can factor A(L) into two components (1� L)A�(L)

A(L) = (1� L)A�(L);

where A�(L) is a polynomial of order p�1. Since A(L) has only one unit root, it follows that
all roots of A�(L) are outside the unit circle

� Thus, we can write (2) as
(1� L)A�(L)yt = B(L)"t

so that
A�(L)�yt = B(L)"t

� Notice that as all roots of A�(L) lies outside the unit circle, the �yt sequence is stationary

� Hence, di¤erencing the data transforms an I(1) process to an I(0)

� The general point is that the d th di¤erence of a process with d unit roots is stationary

� These models are called Di¤erence Stationary Models

� Such a sequence is integrated of order d and denoted by I(d)

Detrending
� Not all nonstationary models can be transformed into well-behaved ARMA models by appro-
priate di¤erencing

� Consider, for example, a model that is the sum of a deterministic trend and a pure noise
component:

yt = y0 + a1t+ "t

� The �rst di¤erence of yt is not well-behaved because

�yt = a1 + "t � "t�1

� Here, �yt is not invertible (it cannot be expressed in the form of an convergent or �nite
autoregressive process)

� Instead, an appropriate way to transform this model is to estimate the regression

yt = a0 + a1t+ et;

where et is the estimated values of the "t series, and a0 is the estimated value of the y0

� Simply subtracting the estimated values of the yt sequence from the actual values (detrending)
yields an estimate of the stationary sequence et

� Hence, the above model is called Trend Stationary Model

� The detrended (or di¤erenced) processes can then be modeled using traditional methods (such
as ARMA estimation)

� In general, detrending is accomplished by regressing yt on a deterministic polynomial time
trend

yt = a0 + a1t+ a2t
2 + :::+ ant

n + et
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� To �nd the appropriate degree of the polynomial the common practice is to estimate the
regression equation using the large of n, if the t-statistics indicates an is zero, consider a
polynomial trend of order n� 1, and continue this way until a nonzero coe¢ cient is found

� Though computer programs give you the appropriate lag length chosen according to AIC or
SBC criterias

The E¤ect of a Unit Root on Regression Residuals
� Consider the regression equation

yt = a0 + a1zt + et (4.12)

� The assumptions of the classical regression model necessitate that both the yt and zt sequences
be stationary and that the errors have a zero mean and a �nite variance

� In the presence of nonstationary variables, there might be what Granger and Newbold (1974)
call a spurious regression

� A spurious regression has a high R2 and t-statistics that appear to be signi�cant, but the
results are without any economic meaning.

� The regression output �looks good,�but the least-squares estimates are not consistent and
the customary tests of statistical inference do not hold

� Let�s generate two sequences,yt and zt, as independent random walks using the formulas:

yt = 0:2 + yt�1 + "yt

zt = �0:1 + zt�1 + "zt
where "yt and "zt are white-noise processes that are independent of each other

� Since the yt and zt sequences are independent of each other, (4.12) is necessarily meaningless;
any relationship between the two variables is spurious

� Surprisingly, Granger and Newbold (1974) were able to reject the null hypothesis a1 = 0 in
approximately 75% of the cases

�The reason is that the deterministic drift terms that cause the sustained increase in yt
and the overall decline in zt. Hence, it appears that the two series are inversely related
to each other and the correlation between the variables gets close to 1

�Moreover, the estimated residuals from a spurious regression (et) will exhibit a high
degree of autocorrelation, and its the variance becomes in�nitely large as t increases,
which is inconsistent with the distributional theory underlying the use of OLS

� The Results:

� If the yt and zt sequences are integrated of di¤erent orders, regression equations using such
variables are meaningless

� If the nonstationary yt and zt sequences are integrated of the same order, and if the residual
sequence contains a stochastic trend, the regression is spurious
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� In this case, it is often recommended that the regression equation be estimated in �rst
di¤erences

�yt = a1�zt +�et

� If the nonstationary yt and zt sequences are integrated of the same order, and if the residual
sequence is stationary, yt and zt are cointegrated

�A trivial example of a cointegrated system occurs if "yt and "zt are perfectly correlated

Dickey-Fuller Tests
� This section outlines a procedure to determine whether a1 = 1 in the model

yt = a1yt�1 + et

� Begin by subtracting yt�1 from each side of the equation in order to write the equivalent form

�yt = yt�1 + "t

where  = a1 � 1

� Testing the hypothesis a1 = 1 is equivalent to testing the hypothesis  = 0

� Example: Suppose the estimate of

yt = a1yt�1 + et

such that a1 = 0:9546 with a standard error of 0:030

� The OLS regression in the form
�yt = yt�1 + "t

will yield an estimate of  equal to �0:0454 with the same standard error of 0:030

� Hence, the associated t-statistics for the hypothesis  = 0 is �0:0454=0:03 = �1:5133

� Dickey and Fuller (1979) consider three di¤erent regression equations that can be used to test
for the presence of a unit root:

�yt = yt�1 + "t

�yt = a0 + yt�1 + "t

�yt = a0 + yt�1 + a2t+ "t

� The parameter of interest in all the regression equations is ; if  = 0, the yt sequence contains
a unit root

� In their Monte Carlo study, Dickey and Fuller (1979) found that the critical values for  = 0
depend on the form of the regression (whether an intercept and/or time trend is included in
the regression equation) and sample size
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� These critical values are unchanged when the last equations above are replaced by the au-
toregressive processes:

�yt = yt�1 +

pX
i=2

�i�yt�i+1 + "t

�yt = a0 + yt�1 +

pX
i=2

�i�yt�i+1 + "t

�yt = a0 + yt�1 + a2t+

pX
i=2

�i�yt�i+1 + "t

� Tests including lagged changes are called Augmented Dickey�Fuller tests

� Consider the pth order autoregressive process

yt = a0 + a1yt�1 + :::+ apyt�p + "t

we do not get into details but this equation can be written as

�yt = a0 + yt�1 +

pX
i=2

�i�yt�i+1 + "t (4.30)

where  = �(1�
pX
i=1

ai) and �i =
pX
i=1

aj

� Here, if
X

ai = 1 so that  = 0, and the system has a unit root

� Clearly, the simple regression
�yt = a0 + yt�1 + "t

is inadequate to this task if (4.30) is the true data-generating process

�We cannot properly estimate  and its standard error unless all of the autoregressive
terms are included in the estimating equation

� Since the true order of the autoregressive process is unknown, we need to select the appropriate
lag length

� Including too many lags reduces the power of the test and a loss of degrees of freedom

�One approach is to use the general-to-speci�c methodology. Start with a relatively long
lag length and pare down the model by the usual t-test and/or F-tests, or by AIC an
SBC tests

Example: The �le HW2_data.xlsx contains the U.S. data from column F onwards. Use the real
GDP data in the �le

a-) Form the log of real GDP as lyt = log(RGDP ). Form the autocorrelations. By using augmented
Dickey�Fuller test check if the series is stationary

Answer:
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cd "E:nDropboxnteachingn2015-16 TOBB-ETUnIKT 553 Applied Time Series 2"
wfcreate question q 1960Q1 2012Q4
import "HW2_data.xlsx" range="Sayfa1!F2:J213"
rename series02 Tbill
rename series03 r5
rename series04 RGDP
rename series05 Potent
series ly=@log(RGDP)
ly.correl(10)

ly.uroot(adf,info=aic)

b-) Form the log of real GDP as lyt = log(RGDP ). Detrend the data with a linear time trend and
obtain the residuals. Then check if the residual series is stationary

Answer:
ls ly c @trend
resid.correl(10)

resid.uroot(adf,info=aic)

c-) Find the growth rate of real GDP as lyt � lyt�1. Then check if the series is stationary.

Answer:
series y_gr=ly-ly(-1)
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y_gr.uroot(adf,info=aic)

d-) Using ACF and PACF, and also the Akaike Information Criterion (AIC) and the Schwartz
Bayesian Criterion (SBC) model selection criterias, �nd the parsimonous model that best represent
the growth rate of real GDP data (�nd the ARMA representation of the data). Compare your
result with the lag length selected automatically in the unit root test in part c-).

Answer: -AR(1)-
y_gr.correl(10)

ls y_gr c ma(1) ma(2)
resid.correl(10)

ls y_gr c ar(1)
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resid.correl(10)
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