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[DISCLAIMER]

These notes are meant to provide intuition on the basic mechanisms of VARs

As such, most of the material covered here is treated in a very informal way

If you crave a formal treatment of these topics, you should stop here and buy a
copy of Hamilton’s “Time Series Analysis”
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VARs & Macro-econometricians’ job

I According to a well-known paper by Stock & Watson (2001, JEP)
macroeconometricians (would like to) do four things

1. Describe and summarize macroeconomic time series

2. Make forecasts

3. Recover the true structure of the macroeconomy from the data

4. Advise macroeconomic policymakers

I Vector autoregressive models are a statistical tool to address these tasks
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What can we do with vector autoregressive models?

I 3 variables: real GDP growth (∆y), inflation (π) and the policy rate (i)

I A VAR can help us answering the following questions

1. What is the dynamic behaviour of these variables? How do these variables interact?

2. What is the profile of GDP conditional on a specific future path for the policy rate?

3. What is the effect of a monetary policy shock on GDP and inflation?

4. What has been the contribution of monetary policy shocks to the behaviour of GDP
over time?
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What is a Vector Autoregression (VAR)?

I Given, for example, a (3× 1) vector of time series xt where

xt =

 ∆y1 ∆y2 ... ∆yT
π1 π2 ... πT
r1 r2 ... rT


I A stationary structural VAR of order 1 is

Axt = Bxt−1 + εt for t = 1, ..., T

• A and B are (3× 3) matrices of coefficients
• εt is an (3× 1) vector of unobservable zero mean white noise processes
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Three different ways of writing the same thing

I There are different ways to represent the VAR(1)

Axt = Bxt−1 + εt

I For example, we can also write it:
• In matrix form a11 a12 a13

a21 a22 a23
a31 a31 a33

∆yt
πt
rt

 =

 b11 b12 b13
b21 b22 b23
b31 b32 b33

∆yt−1
πt−1
rt−1

+

ε∆yt
επt
εrt


• As a system of linear equation

a11∆yt + a12πt + a13rt = b11∆yt−1 + b12πt−1 + b13rt−1 + ε∆yt

a21∆yt + a22πt + a13rt = b21∆yt−1 + b22πt−1 + b23rt−1 + επt

a31∆yt + a32πt + a33rt = b31∆yt−1 + b32πt−1 + b33rt−1 + εrt
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The structural innovations

I We defined εt as a “vector of unobservable zero mean white noise processes”.
What does it mean?

I This simply means that they are serially uncorrelated and independent of
each other

I In other words
εt = (ε′∆yt, ε′πt, ε′rt)

′ ∼ N (0, I)

or

VCV(εt) =

 1 0 0
− 1 0
− − 1

 and CORR(εt) =

 1 0 0
− 1 0
− − 1
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[Back to basics] What is a variance-covariance matrix?

I The formula for the variance of a univariate time series x = [x1, x2, ..., xT] is

VAR =
T

∑
t=0

(xt − x̄)2

N
=

T

∑
t=0

(xt − x̄) (xt − x̄)
N

I If we have a bivariate time series

xt =

[
x1 x2 ... xT
y1 y2 ... yT

]
the formula becomes

VCV =

[
∑T

t=0
(xt−x̄)(xt−x̄)

N ∑T
t=0

(xt−x̄)(yt−ȳ)
N

∑T
t=0

(yt−ȳ)(xt−x̄)
N ∑T

t=0
(yt−ȳ)(yt−ȳ)

N

]
=

[
VAR(x) COV(x, y)

COV(x, y) VAR(y)

]
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The general form of the stationary structural VAR(p) model

I The basic VAR(1) model may be too poor to sufficiently summarize the main
characteristics of the data

• Deterministic terms (such as time trend or seasonal dummy variables)
• Exogenous variables (such as the price of oil)

I The general form of the VAR(p) model with deterministic terms (Zt) and
exogenous variables (Wt) is given by

Axt = B1xt−1 + B2xt−2 + ... + Bpxt−p + ΛZt + ΨWt + εt
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Why is it called structural VAR?

I The equations of a structural VAR define the true structure of the economy

I The fact that εt = (ε′∆yt, ε′πt, ε′rt)
′ ∼ N (0, I) implies that we can interpret

εt as structural shocks

I For example we could interpret
• ε∆yt as an aggregate shock
• επt as a cost-push shock
• εrt as a monetary policy shock
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Why is it called stationary VAR?

I One of the main assumptions of standard VARs is stationarity of the data

I A stochastic process is said covariance stationary if its first and second
moments, E (x) and VCV (x) respectively, exist and are constant over time
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Structural VARs potentially answers many interesting questions

I For example in our VAR(1) a11 a12 a13
a21 a22 a23
a31 a32 a33

∆yt
πt
rt

 =

 b11 b12 b13
b21 b22 b23
b31 b32 b33

∆yt−1
πt−1
rt−1

+

ε∆yt
επt
εrt


• a31 is the impact multiplier of monetary policy shocks on GDP
• a32 is the impact multiplier of monetary policy shocks on inflation
• If we simulate the model, we can evaluate the time profile of a monetary policy shock
on GDP

• We can add additional variables (and equations) and simulate other shocks: credit
supply, oil price, QE,...
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However... the estimation of structural VARs is problematic

I The equations of Axt = Bxt−1 + εt cannot be estimated with OLS because
they violate one important assumption =⇒ the regressor cannot be
correlated with the error term

• To see that, take the GDP equation

a11∆yt + a12πt + a13rt = b11∆yt−1 + b12πt−1 + b13rt−1 + ε∆yt

and compute COV[πt, εyt]

I OLS estimation of Axt = Bxt−1 + εt would produce inconsistent estimates
of the parameters, impulse responses, etc
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How to solve this problem?

I In the GDP equation

a11∆yt + a12πt + a13rt = b11∆yt−1 + b12πt−1 + b13rt−1 + ε∆yt

the terms a12πt and a13rt are the ones generating problems for OLS
estimation

I This endogeneity problem disappears if we remove the contemporaneous
dependence of ∆yt on the other endogenous variables

I More in general the A matrix is problematic (since it includes all the
contemporaneous relation among the endogenous variables)
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I We can solve this problem by simply pre-multiplying the VAR by A−1

A−1Axt = A−1Bxt−1 + A−1εt
xt = Fxt−1 + A−1εt

xt = Fxt−1 + ut

I That is, we moved the contemporaneous dependence of the endogenous
variables (which is given by A) into the “modified” error terms ut

I This implies that now CORR(ut) 6= I
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[Back to basics] The inverse of a matrix

I The inverse of a 2× 2 matrix

X =

[
a b
c d

]
X−1 =

1
ad− bc

[
d −b
−c a

]

I This implies that ut = A−1εt can be computed as

u1t =
a22ε1t−a21ε2t

∆

u2t =
−a21ε1t+a11ε2t

∆

where ∆ = a11a22 − a12a21
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The reduced-form VAR

I This alternative formulation of the VAR

xt = Fxt−1 + ut

is called the reduced-form representation

I In matrix form∆yt
πt
rt

 =

 f11 f12 f13
f21 f22 f23
f31 f32 f33

∆yt−1
πt−1
rt−1

+

u∆yt
uπt
uit


where

ut ∼ N (0, Σu) and CORR(ut) =

 1 ρ12 ρ13
− 1 ρ23
− − 1
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VAR Estimation
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We can now estimate the VAR with some real data

I UK quarterly data from 1985.I to 2013.III

I VAR(1) with a constant xt = c + Fxt−1 + ut
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OLS estimation – Typical VAR output

I Matrix of coefficients F′

Real GDP GDP Deflator Policy Rate

c 1.14 1.19 -0.11
Real GDP(-1) 0.61 -0.07 0.06
GDP Deflator(-1) -0.09 0.02 0.03
Policy Rate(-1) 0.01 0.30 0.96

I Correlation between reduced-form residuals

Real GDP GDP Deflator Policy Rate

Real GDP 1.000 -0.178 0.373
GDP Deflator – 1.000 0.137
Policy Rate – – 1.000
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Debunking the typical VAR output

I The constant is not the mean nor the long-run equilibrium of a variable
• In our example, the mean of the policy rate is not negative

Real GDP GDP Deflator Policy Rate

c 1.14 1.19 -0.11

I The correlation of the residuals reflects the contemporaneous relation
between our variables

• In our example GDP growth and inflation are contemporaneously negatively correlated

Real GDP GDP Deflator Policy Rate

Real GDP 1.000 -0.178 0.373
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Model checking & tuning

I We do not cover this in detail but before interpreting the VAR results you
should check a number of assumptions

I Loosely speaking we need to check that the reduced-form residuals are
• Normally distributed
• Not autocorrelated
• Not heteroskedastic (i.e., have constant variance)

I ... and that the VAR is stationary (we’ll see in a second what it means)
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Model checking: why the residuals?

I The VAR believes that

x∼ N (µ, σ) =⇒


∆y ∼ N (µ∆y, σ∆y)
π ∼ N (µπ , σπ)
i ∼ N (µi, σi)

I If the data that we feed into the VAR has not these features, the residuals
will inherit them

I Note that
• Mean (µ) and variance (σ) are constant =⇒ the data have to be stationary!
• The mean (µ) and variance (σ) are not known a priori
• At each point in time xt does not generally coincide with µ because of (i) shocks
hitting at t and (ii) shocks that hit in the past and that are slowly dying out

• The average of xt over a given sample does not necessarily coincide with µ

VAR models – VAR Estimation 23



Can we recover the mean of our endogenous variables?

I Yes. It is given by µ =E[xt]

E[xt] = E[c + Fxt−1 + ut] =

= E[c + F(c + Fxt−2+ut−1) + ut] = E[c + Fc + F2xt−2+Fut−1+ut] =

= E[c + Fc + F2c + ... + Ft−2c + Ft−1x1+Ft−2u2+... + F2ut−2+Fut−1+ut] =

= ... =

= E

[
t−2
∑

j=0
Fjc + Ft−1x1 +

t−2
∑

j=0
Fjut−j

]

I If VAR is stationary, from the last expression we get

E[xt] = (I− F)−1 c = µ
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[Back to basics] Geometric series

I Consider the following sum
T
∑

j=0
Yj

I When T → ∞ we have:

(1 + Y + Y2 + ... + Y∞) = (I− Y)−1

if and only if:
• |eig(Y)| < 1 when Y is a matrix
• Y < 1 when Y is a number

I Therefore, for T large enough we have

E

[
t−2

∑
j=0

Fjc + Ft−1x0 +
t−2

∑
j=0

Fjut−j

]
= E

[
(I− F)−1 c

]
+ Ft−1x1︸ ︷︷ ︸

≈0

+ E

[
t−2

∑
j=0

Fjut−j

]
︸ ︷︷ ︸

≈0
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Stationary VAR, stationary data

I A VAR is stationary (or stable) when

|eig(F)| < 1

I In that case, the VAR thinks that (I− F)−1c is the unconditional mean of
the stochastic processes governing our variables

I VAR models stationary data
• GDP level clearly does not have a well defined mean
• GDP growth does!
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Unconditional mean in practice

I The unconditional mean is an interesting element of VAR analysis but it is
often ignored

I From the estimated VAR, recover both c and F

I Compute the unconditional mean as

(I− F)−1c =

 2.32 −0.28 −1.89
1.34 1.24 10.58
4.89 0.67 33.87

 1.14
1.19
−0.11

 =

 2.51
1.80
2.49

 =

 µ∆y

µπ

µi
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Why stationarity of the data is important

I In absence of shocks, each variable will converge to its unconditional mean

For example, start
from a point in time
T where:

yT = 2%
πT = 2%
rT = 4%
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In light of these considerations: is our data sensible?

I UK quarterly data from 1985.I to 2013.III
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Some VAR limitations

I VARs are linear models of stationary data

I ... but often macro data
• is non-linear (crisis periods)
• is non-stationary (trends, breaks, etc)
• displays time-varying variance (Great Moderation Vs Great Recession)

I All these elements have to be taken into account when analyzing the output
from VAR analysis (especially when estimated over the sample period we use
these days which features all the above)
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Back to our estimated VAR

Real GDP GDP Deflator Policy Rate

c 1.14 1.19 -0.11
Real GDP(-1) 0.61 -0.07 0.06
GDP Deflator(-1) -0.09 0.02 0.03
Policy Rate(-1) 0.01 0.30 0.96

I What can we do with it?

• What are the dynamic properties of these variables? [Look at lagged coefficients]
• How do these variables interact? [Look at cross-variable coefficients]
• What will be inflation tomorrow? [???]
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Forecasting

I Forecasting is one of the main objectives of multivariate time series analysis

I The best linear predictor (in terms of minimum mean squared error) of xT+1
based on information available at time T (today) is

xf
T+1 = FxT

I For example, if today (T) we have

xT

 ∆yT = 2%
πT = 2%
rT = 4%

 =⇒ xf
T+1 = FxT

 ∆yT+1 = 2.15%
πT+1 = 2.31%
rT+1 = 3.94%


I Note that we can also construct conditional forecasts by specifying an
exogenous path for a variable (the policy rate for example)
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The Identification Problem
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Back to our estimated VAR

Real GDP GDP Deflator Policy Rate

c 1.14 1.19 -0.11
Real GDP(-1) 0.61 -0.07 0.06
GDP Deflator(-1) -0.09 0.02 0.03
Policy Rate(-1) 0.01 0.30 0.96

I What can we do with it?

• What are the dynamic properties of these variables? [Look at lagged coefficients]
• How do these variables interact? [Look at cross-variable coefficients]
• What will be inflation tomorrow [Forecasting]
• What is the effect of a monetary policy shock on GDP and inflation? [???]
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Reduced-form VARs do not tell us anything about the
structure of the economy

I We cannot interpret the reduced-form error terms (u) as structural shocks
• How do we interpret a movement in ur? Since it is a linear combination of εr, ε∆y,
and επ it is hard to know what is the nature of the shock

I Is it a shock to aggregate demand that induces policy to move the interest
rate? Or is it a monetary policy shock?

• This is the very nature of the identification problem

I To answer this question we need to get back to the structural representation
(where the error terms are uncorrelated)
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From the reduced-form back to the structural form

I We normally estimate

xt = Fxt−1 + ut and Σu

I But our ultimate objective is to recover

Axt = Bxt−1 + εt

I Does not sound too difficult... We know that

F = A−1B
ut = A−1εt
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I We also know that

Σu = E
[
utu′t

]
= E

[
A−1ε

(
A−1ε

)′]
= A−1Σε

(
A−1

)′
= A−1A−1′

since Σε = I

I In other words if we pin down A−1 we are done, since we can recover
• εt = Aut
• B = AF

and we would know the structural representation of the economy

I You can think of the idnetified Axt = Bxt−1 + εt model as the 3 equation
New Keynesian model
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[Back to basics] The variance–covariance matrix of residuals

I Why Σu = E [utu′t]?

I The formula for the variance of a univariate time series is x = [x0, x1, ..., xT]

VAR =
T

∑
t=0

(xt − x̄)2

N

I But the residuals (both the ut and the εt) have zero mean which implies that
formula would be

VAR =
T

∑
t=0

x2
t

N
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[Back to basics] The variance–covariance matrix of residuals

I In a bivariate VAR we would have

utu′t =
[

u1
1 u1

2 ... u1
T

u2
1 u2

2 ... u2
T

] 
u1

1 u2
1

u1
2 u2

2
... ...
u1

T u2
T

 =

[
∑T

t=0
(
u1

t
)2

∑T
t=0
(
u1

t u2
t
)

− ∑T
t=0
(
u2

t
)2

]

I And therefore

E
[
utu′t

]
=

[
VAR

[
u1] COV

[
u1u2]

− VAR
[
u1] ]
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The “identification problem”

I Identification problem boils down to pinning down A−1

I If we write Σu = A−1A−1′ in matrices

Σu︸︷︷︸
σ2

u1 σ2
u1,u2 σ2

u1,u3
− σ2

u2 σ2
u2,u3

− − σ2
u3


= A−1A−1′︸ ︷︷ ︸

a11 a12 a13
a21 a22 a23
a31 a32 a33


−1

a11 a12 a13
a21 a22 a23
a31 a32 a33


−1′

we can derive a system of equations

I However, there are 9 unknowns (the elements of A−1A−1′) but only 6
equations (because the variance-covariance matrix is symmetric)

• The system is not identified!
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Common Identification Schemes
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Common identification schemes

I Zero short-run restrictions (also known as recursive, Cholesky, orthogonal)

I Zero long-run restrictions (also known as Blanchard-Quah)

I Theory-based restrictions

I Sign restrictions
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Zero short-run restrictions

I Assume that A is lower triangular a11 0 0
a21 a22 0
a31 a32 a33

∆yt
πt
rt

 =

 b11 b12 b13
b21 b22 b23
b31 b32 b33

∆yt−1
πt−1
rt−1

+

ε∆yt
επt
εrt


I Or in other words that

• ε∆yt affects contemporaneously all variables, namely ∆yt, πt and rt
• επt affects contemporaneously only πt and rt, but no ∆yt
• εrt affects contemporaneously only rt

I We now have 6 unknowns and 6 equations!
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I To see what are the implications of our assumptions on A, first remember
that the inverse of a lower triangular matrix is also lower triangular[

a11 0 0
a21 a22 0
a31 a32 a33

]−1

=

[
ã11 0 0
ã21 ã22 0
ã31 ã32 ã33

]

I Now pre-multiply the VAR by A−1[
∆yt
πt
rt

]
=

[
f11 f12 f13
f21 f22 f23
f31 f32 f33

] [
∆yt−1
πt−1
rt−1

]
+

[
ã11 0 0
ã21 ã22 0
ã31 ã32 ã33

] [
ε∆yt
επt
εrt

]

I Which implies that 
∆yt = ... + ã11ε∆yt

πt = ... + ã21ε∆yt + ã22επt

rt = ... + ã31ε∆yt + ã32επt + ã33εrt
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I We normally implement this identification scheme via a Cholesky
decomposition of Σu

Σu = P′P

where P′ is lower triangular

I Note that
Σu = P′P but also Σu = A−1A−1′

I and that
A is lower triangular

I Then it musty follow that P′= A−1 =⇒ Identification!

VAR models – Common identification schemes: zero short-run restrictions 45



[Back to basics] Cholesky decomposition of a matrix

I Don’t be scared of Cholesky decomposition! It’s a kind of square root of a
matrix

• As in Excel you type sqrt() in Matlab you type chol()

I A symmetric and positive definite matrix X can be decomposed as:

X = P′P

where P is an upper triangular matrix (and therefore P′ is lower triangular)

I The formula is

X =

[
a b
b c

]
P =

√a b√
a

0
√

c− b2

a
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Zero long-run restrictions

I Re-write the VAR as
xt = Fxt−1 + A−1εt

I If a shock hits in t, its cumulative (long run) impact on xt would be

xt,t+∞ = A−1εt+FA−1εt+F2A−1εt + ... + F∞A−1εt

I We can rewrite

xt,t+∞ =
∞

∑
j=0

FjA−1εt = (I− F)−1 A−1εt = Dεt

where D is the cumulative effect of the shock εt from time t to ∞
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I What is the intuition for D?∆yt,t+∞
πt,t+∞
it,t+∞

 =

 d11 d12 d13
d21 d22 d23
d31 d32 d33

εyt
επt
εrt


I Take the first equation: ∆yt,t+∞ = d11εyt + d12επt + d13εrt

• d13 represents the cumulative impact of a monetary policy shock (hitting in t) on the
level GDP in the long-run

• If you believe in the neutrality of money you would expect d13 = 0
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I To achieve identification note that

DD′ = (I− F)−1 A−1A−1′ (I− F)−1′ = (I− F)−1 Σu (I− F)−1′

I Note also that
• The right-hand side of the above equation is known
• Both DD′ and (I− F)−1 Σu (I− F)−1′ are symmetric matrices
• There exists an upper triangular matrix P such that P′P = (I− F)−1 Σu (I− F)−1′

I Therefore, if we assume that D is lower triangular, it must be that D = P′

I Finally A−1 = (I− F)D =⇒ Identification!
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Sign restrictions

I In the zero short-run restriction identification we used the fact that

Σu = A−1A−1′ and Σu = P′P

where the lower triangular P′ matrix is the Cholesky decomposition of Σu

I For a given random orthonormal matrix (i.e., such that S′S = I) we have
that

Σu = A−1A−1′ = P′S′SP =P ′P
where P ′ is generally not lower triangular anymore
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I A−1 = P ′ is clearly a valid solution to the identification problem

I But S′ is a random matrix... is the solution A−1 = P ′ plausible?

I Identification is achieved by checking whether the impulse responses implied
by S′ satisfy a set of a priori (and possibly theory-driven) sign restrictions

I We can draw as many S′ as we want and construct a distribution of the
solutions that satisfy the sign restrictions
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Sign restriction in steps

1. Draw a random orthonormal matrix S′

2. Compute A−1 = P′S′ where P′ is the Cholesky decomposition of the
reduced form residuals Σu

3. Compute the impulse response associated with A−1

4. Are the sign restrictions satisfied?
4.1 Yes. Store the impulse response
4.2 No. Discard the impulse response

5. Perform N replications and report the median impulse response (and its
confidence intervals)
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Structural Dynamic Analysis
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Why do we need identification?

I According to Stock & Watson’s list so far we have done
1. Describe and summarize macroeconomic time series
2. Make forecasts
3. Recover the true structure of the macroeconomy from the data

I How about
1. Advise macroeconomic policymakers

I (A good) identification allows us to address the last point

I This is normally done by means of Impulse responses, Forecast error variance
decompositions, and Historical decompositions
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Impulse response functions

I Impulse response functions (IR) answer the question
• What is the response of current and future values of each of the variables to a
one-unit increase in the current value of one of the structural errors, assuming that
this error returns to zero in subsequent periods and that all other errors are equal to
zero

I The implied thought experiment of changing one error while holding the
others constant makes sense only when the errors are uncorrelated across
equations
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How to compute impulse response functions

I As an example, we compute the IR for a bivariate VAR xt =
(
x′1t, x′2t

)
I Define a vector of exogenous impulses (sτ) that we want to to impose to the
structural errors of the system

Time (τ) 1 2 h
Impulse to ε1 (s1,τ) s1,1 = 1 s1,2 = 0 s1,h = 0
Impulse to ε2 (s2,τ) s2,1 = 0 s2,2 = 0 s2,h = 0
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I We can use the following hybrid representation to compute the IR

xt = Fxt−1 + A−1st,

I The impulse response IRτ is given by{
IR1 = A−1s1,
IRτ = F·IRτ−1, for τ = 2, ..., h.
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Forecast error variance decompositions

I Forecast error variance decompositions (VD) answer the question
• What portion of the variance of the forecast error in predicting xi,T+h is due to the
structural shock εi?

I Provide information about the relative importance of each structural shock in
affecting the variables in the VAR
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How to compute forecast error variance decompositions

I As an example, we compute the VD for the 1-step ahead forecast error in a
bivariate VAR xt =

(
x′1t, x′2t

)
I First, let’s define the 1-step ahead forecast error

ξT+1 = xT+1 − xf
T+1 = xT+1 − FxT

I It follows that
ξT+1 = uT+1 = A−1εT+1

Forecast error is the yet unobserved

realization of the shocks
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I In a bivariate VAR we have[
ξ1,T+1
ξ2,T+1

]
=

[
ã11 ã12
ã21 ã22

] [
ε1,T+1
ε2,T+1

]
where ã are the elements of A−1

I Or {
ξ1,T+1 = ã11ε1,T+1 + ã12ε2,T+1

ξ2,T+1 = ã21ε1,T+1 + ã22ε2,T+1

I What is the variance of the forecast error?

VAR
(
ξ1,T+1

)
= ã2

11VAR (ε1,T+1) + ã2
12VAR (ε2,T+1) = ã2

11 + ã2
12

VAR
(
ξ2,T+1

)
= ã2

21VAR (ε1,T+1) + ã2
22VAR (ε2,T+1) = ã2

21 + ã2
22
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[Back to basics] Basic properties of the variance

I If X is a random variable X and a is a constant
• VAR (X + a) = VAR (X)
• VAR (aX) = a2VAR (X)

I If Y is a random variable and b is a constant
• VAR (aX+bY) = a2VAR (X) + b2VAR (Y) + 2abCOV (X, Y)

I Since the structural errors are independent, it follows that COV (ε1, ε2) = 0
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I Therefore, we just showed that variance of the 1-step ahead forecast error is

VAR
(
ξ1,T+1

)
= ã2

11 + ã2
12

VAR
(
ξ2,T+1

)
= ã2

21 + ã2
22

I Which portion of the variance is due to each structural error?
VDε1

x1 =
ã2

11
ã2

11+ã2
12

VDε2
x1 =

ã2
12

ã2
11+ã2

12︸ ︷︷ ︸
This sums up to 1


VDε1

x2 =
ã2

21
ã2

21+ã2
22

VDε2
x2 =

ã2
22

ã2
21+ã2

22︸ ︷︷ ︸
This sums up to 1
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Historical decompositions

I Historical decompositions (HD) answer the question
• What portion of the deviation of xi,t from its unconditional mean is due to the
structural shock εi?

I We showed before that each observation of a variable does not generally
coincide with its unconditional mean

I This is because, in each period, the structural shocks realize and push all
variables away from their equilibrium values
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[Back to basics] Wold representation of a VAR

I Each observation of our original data can be re-written as the cumulative
sum of the structural shocks

x2 = Fx1 + A−1ε2

x3 = Fx2 + A−1ε3= F(Fx1 + A−1ε2) + A−1ε3 = F2x1 + FA−1ε2 + A−1ε3
= ... =

xT = FT−1x1 + (FT−2A−1ε2 + ... + FA−1εT−1 + A−1εT)

I Or, more in general

xt = Ft−1x1 +
t−2

∑
j=0

FjA−1εt−j for t > 1
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How to compute historical decompositions

I As an example, we compute the HD of the third observation in a bivariate
VAR xt =

(
x′1t, x′2t

)′
I First write x3 as a function of past errors (ε2 and ε3) and the initial
conditions (x1)

x3 = F2x1︸︷︷︸
init3

+ FA−1︸ ︷︷ ︸
Θ1

ε2 + A−1︸︷︷︸
Θ0

ε3

I Re-write x3 in matrices[
x1,3
x2,3

]
=

[
init1,3
init2,3

]
+

[
θ1

11 θ1
12

θ1
21 θ1

22

] [
ε1,2
ε2,2

]
+

[
θ0

11 θ0
12

θ0
21 θ0

22

] [
ε1,3
ε2,3

]
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I Therefore x3 can be expressed as{
x1,3 = init1,3 + θ1

11ε1,2 + θ1
12ε2,2 + θ0

11ε1,3 + θ0
12ε2,3

x2,3 = init2,3 + θ1
21ε1,2 + θ1

22ε2,2 + θ0
21ε1,3 + θ0

22ε2,3

I The historical decomposition is given by
HDε1

1,3 = θ1
11ε1,2 + θ0

11ε1,3

HDε2
1,3 = θ1

12ε2,2 + θ0
12ε2,3

HDinit
1,3 = init1,3︸ ︷︷ ︸

This sums up to x1,3


HDε1

2,3 = θ1
21ε1,2 + θ0

21ε1,3

HDε2
2,3 = θ1

22ε2,2 + θ0
22ε2,3

HDinit
2,3 = init2,3︸ ︷︷ ︸

This sums up to x2,3
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“Famous VAR Examples”
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Examples of different identification schemes

I Zero short-run restrictions
• Stock & Watson (2001). “Vector Autoregressions,” Journal of Economic Perspectives

I Zero long-run restrictions
• Blanchard & Quah (1989). “The Dynamic Effects of Aggregate Demand and Supply
Disturbances”, American Economic Review

I Sign Restrictions
• Uhlig (2005). “What are the effects of monetary policy on output? Results from an
agnostic identification procedure,” Journal of Monetary Economics
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Example: zero short-run restrictions

I Stock & Watson (2001). “Vector Autoregressions,” Journal of Economic
Perspectives

I US quarterly data from 1960.I to 2000.IV
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Monetary policy shocks, inflation and unemployment

I Objective: infer the causal influence of monetary policy on unemployment,
inflation and interest rates

I Assumptions
• MP (rt) reacts contemporaneously to movements in inflation and in unemployment
• MP shocks (εrt) do not affect inflation and unemployment within the quarter of the
shock  a11 0 0

a21 a22 0
a31 a32 a33

πt
urt
rt

 =

 b11 b12 b13
b21 b22 b23
b31 b32 b33

πt−1
urt−1
rt−1

+

επt
εurt
εrt


I Do these assumptions make sense?
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The effect of a monetary policy shock
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The other two shocks are identified by definition... but how
can we interpret them?

I How about επ and εur? They represent an aggregate supply and a demand
equation...

• The shock to επ affects all variables contemporaneously
• The shock to εur affects rt contemporaneously but not πt

I Do these assumptions make sense?

I [Some shocks may be better identified than others]
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Aggregate demand and aggregate supply shocks

I Shock to επt behaves as a negative
aggregate supply shock
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I Shock to εut behaves as a negative
aggregate demand shock

5 10 15 20
−0.5

0

0.5

Inflat. to Unempl.

5 10 15 20
−0.5

0

0.5

Unempl. to Unempl.

5 10 15 20
−1

0

1

Fed Funds to Unempl.

VAR models – Examples: Stock & Watson (2001, JEP) 73



Forecast error variance decomposition

Inflation Unemployment Fed Funds

επ εur εr επ εur εr επ εur εr
t = 1 1.00 0.00 0.00 0.00 1.00 0.00 0.02 0.20 0.79
t = 4 0.88 0.10 0.01 0.02 0.96 0.02 0.09 0.51 0.41
t = 8 0.83 0.16 0.01 0.10 0.76 0.13 0.11 0.60 0.29
t = 12 0.83 0.15 0.02 0.21 0.60 0.19 0.15 0.59 0.26
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Example: zero long-run restrictions

I Blanchard & Quah (1989). “The Dynamic Effects of Aggregate Demand and
Supply Disturbances”, American Economic Review

I US quarterly data from 1948.I to 1987.IV
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Economic theory and the long-run

I Economic theory usually tells us a lot more about what will happen in the
long-run, rather than exactly what will happen today

• Demand-side shocks have no long-run effect on output, while supply-side shocks do
• Monetary policy shocks have no long-run effect on output
• ...

I This suggests an alternative approach: to use these theoretically-inspired
long-run restrictions to identify shocks and impulse responses
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Blanchard & Quah’s identification assumptions

I There are two types of disturbances affecting unemployment and output

I The first has no long-run effect on either unemployment or output level

I The second has no long-run effect on unemployment, but may have a
long-run effect on output level

I Blanchard & Quah refer to the first as demand disturbances, and to the
second as supply disturbances (traditional Keynesian view of fluctuations)
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Identification

I We showed that the long-run cumulative impact of a structural shocks is

IRτ,τ+∞ =
∞

∑
j=0

FjA−1εt = (I− F)−1 A−1εt = Dεt

I Assume that ε
∆y
t is the supply shock and that εur

t is the demand shock

I We can rewrite the VAR such that the cumulated effect of εur
t on ∆yt is

equal to zero by assuming[
∆yt
urt

]
=

[
d11 0
d21 d22

] [
ε

∆y
t

εur
t

]
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Aggregate demand and supply shocks

I Aggregate supply shock initially
increases unemployment (puzzle of hours
to producticvity shocks)
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I Aggregate demand shocks have a
hump-shaped effect on output and
unemployment
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How can we check the long-run “neutrality” of demand shocks
on output level?

I Let’s simply plot the cumulative sum of the impulse responses of output
growth
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Example: sign restrictions

I Uhlig (2005). “What are the effects of monetary policy on output? Results
from an agnostic identification procedure,” Journal of Monetary Economics

I US monthly data from 1965.I to 2003.XII
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What are the effects of monetary policy on output?

I Before asking what are the effects of a monetary policy shocks we should be
asking, what is a monetary policy shock?

I In the inflation targeting era a monetary policy shock is an increase in the
policy rate that

• is ordered last in a Cholesky decomposition?
• has no permanent effect on output?
• ....?
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What is a monetary policy shock?

I According to conventional wisdom, monetary contractions should

1. Raise the federal funds rate

2. Lower prices

3. Decrease non-borrowed reserves

4. Reduce real output
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Again... What are the effects of monetary policy on output?

I Standard identification schemes do not fully accomplish the 4 points above

• Liquidity puzzle: when identifying monetary policy shocks as surprise increases in the
stock of money, interest rates tend to go down, not up

• Price puzzle: after a contractionary monetary policy shock, even with interest rates
going up and money supply going down, inflation goes up rather than down

I Successful identification needs to deliver results matching the conventional
wisdom
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Uhlig’s identification assumptions

I Uhlig’s assumption: a “contractionary” monetary policy shock does not lead
to

• Increases in prices
• Increase in nonborrowed reserves
• Decreases in the federal funds rate

I How about output? Since is the response of interest, we leave it un-restricted
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[Reminder] How to compute sign restrictions

1. Estimate from the reduced-form VAR F, ut, and Σu

2. Draw a random orthonormal matrix S′, compute P′ =chol(Σu) and recover
A−1 = P′S′

3. Compute the impulse response using IR1 = A−1εt

4. Are the sign restrictions satisfied? Yes. Store the impulse response // No.
Discard the impulse response

5. Perform N replications and report the median impulse response (and its
confidence intervals)
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What happens when you do sign restrictions

I First draw: signs are correct, I keep it!
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What happens when you do sign restrictions

I Second draw: signs are not correct, I discard it!
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What happens when you do sign restrictions

I After a while...
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What are the effects of monetary policy on output?

I Ambiguous effect on real GDP =⇒ Long-run monetary neutrality
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